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Abstract

A reformulation of the ADER approach (Arbitrary high order schemes using DERivatives) for linear hyperbolic

PDE�s is presented. This reformulation leads to a drastic decrease of the computational effort. A formula for the

construction of ADER schemes that are arbitrary high order accurate in space and time is given. The accuracy for some

selected schemes is shown numerically for the two-dimensional linearized Euler equations as a mathematical model for

noise propagation in the time domain in aeroacoustics.
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1. Introduction

Finite volume schemes have become very popular in computational fluid dynamics due to their ro-

bustness and flexibility. They consist of two steps: the reconstruction and the flux calculation. The discrete

values are approximations of cell averages. By the reconstruction step, local values are interpolated from

the average values to calculate the numerical flux between the grid cells. The construction of high order

schemes concerning spatial discretization has been introduced with the idea of ENO and WENO inter-

polation [4,5]. But the time integration usually becomes a limiting factor for accuracy. All these schemes are
generally discretized in time with Runge–Kutta (RK) schemes. These time integration schemes become

inefficient for orders of accuracy higher than four. It can be proven, that all explicit RK time integration

schemes of order higher than four need more integration stages than their order. This is the so-called

Butcher barrier [2].
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The idea of the ADER approach of Toro (see, e.g., [7,9,11]) is to circumvent this efficiency barrier for the

time discretization by considering finite space–time volumes, where the temporal evolution of the fluxes

over the borders of the finite volumes is estimated by a Taylor series in time. The time derivatives are then
replaced by space derivatives using the Lax–Wendroff procedure. With this approach it is (at least theo-

retically) possible to construct schemes of arbitrary high order in space and time with Dt � Dx close to the

stability limit. However, the Lax–Wendroff procedure becomes cumbersome already in the case of linear

systems of PDE�s for very high order ADER schemes. If the ADER approach is applied without any special

treatment, it is not competitive with e. g. finite difference schemes for the solution of linear PDE�s with

respect to the computational effort. In this paper we develop a particular formulation of the ADER ap-

proach, which makes use of simplifications that can be taken into account for linear PDE�s on structured

meshes. A typical field of application would be computational aeroacoustics to simulate noise propagation
in the time domain or electromagnetic wave propagation.

The scope of the paper is as follows. In Section 2 we first give the formulas which are essential for the

reformulation. We derive then a finite difference-like formulation of the ADER approach which signifi-

cantly enhances efficiency with respect to computational effort. In Section 3 we show the convergence rates

obtained with the reformulated ADER schemes in numerical experiments for the two-dimensional line-

arized Euler equations up to 16th order of accuracy in space and time.
2. The fast-ADER approach

The ADER approach is a scheme developed to calculate numerical solutions of systems of hyper-

bolic PDE�s up to an, at least theoretically, arbitrary order. Toro and Millington [11,13] first developed

the idea in one space dimension. Here, the 1st order scheme reduces to the Godunov scheme and the

2nd order scheme is equivalent to the MGRPMGRP approach by Toro [12,13], which is a simplified GRPGRP

scheme of Ben-Artzi and Falcovitz [1]. The extension to multi-dimensions is straightforward and can be

found in [7–9]. In the following we shortly review the basic steps and then we reformulate the whole
procedure to obtain an efficient algorithm. A general system of linear hyperbolic PDE�s in two di-

mensions is given by

~Ut þ A~Ux þ B~Uy ¼ 0; ~U ¼ ~Uðx; y; tÞ and ~Uðx; y; 0Þ ¼ ~U 0ðx; yÞ; ð1Þ

where ~U denotes the vector of physical variables and the matrices A and B are assumed to be constant. The
physical fluxes ~F and ~G are determined by

~F ¼ A~U and ~G ¼ B~U : ð2Þ

Consider now a space–time element Iij � ½tn; tnþ1� as a control volume. The integration of the conser-

vation Eq. (1) over this control volume gives the evolution equations for the cell averages as
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where jIijj is the area of the cell Iij and ~U
n

ij is the integral mean value of ~U in the cell Iij at time tn. For
constant matrices A the flux F is given by
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with the integral mean value being solved by the ADER approach [7–9]

~UADER � 1

Dt

Z tnþ1

tn

~Uð~X 0; tÞdt ¼
X1
k¼0

ð�DtÞk

ðk þ 1Þ! ðAox þ BoyÞk~Uð~X 0; tnÞ: ð5Þ

In the ADER approach the state ~Uð~X 0; tÞ is calculated by a Taylor series. The time derivatives are then

replaced by spatial derivatives with the Lax–Wendroff (or Cauchy–Kovalevskaja) procedure and is then

integrated exactly.
For the construction of numerical schemes, the infinite sum in (5) cut off after ðm� 1Þ addends which

leads to a scheme with order m in time.

Using a Gaussian quadrature formula, the space integral in (4) can be approximated by

~̂F iþ1
2
;j ¼

Dy
2

XNG

k¼1

xkA~UADERðxiþ1
2
; gkÞ; ð6Þ

where the xk denote the weights of the quadrature, NG is the total number and gk are the positions of the

Gaussian quadrature points. It can be shown [11] that this approach is mth order accurate in space and time

if the reconstructions for the derivatives are mth order in space.

An important step in high-order approximation of the fluxes is the method by which one obtains a high-

order pointwise representation of the solution ~U ð0Þðx; y; tÞ and their derivatives ~U ðkÞðx; y; tÞ from the given
cell averages ~UðtÞ. For this purpose we use the conservative Lagrangian interpolation as given in [3,4,9].

In practical computations it is essential that any new scheme is comparable concerning CPU time and

memory to existing schemes, if a solution of given quality has to be calculated. For aeroacoustical cal-

culations such a benchmark scheme is, e.g., the dispersion relation preserving (DRP) scheme of Tam [10].

The ADER scheme in the original formulation as given above is slower than this reference scheme. In the

following some possibilities are shown to make the algorithm much more efficient, at least in the linear case,

considered in this paper.

If the following conditions are fulfilled:
I. Linear systems with constant Jacobians A and B.
II. Constant mesh size in x- and y-direction.

III. Constant time step. 1

IV. Linear reconstruction algorithm in space.

most of the calculations can be executed in a preprocessor step. From now on, we will call the resulting

algorithm fast-ADER scheme when we refer to the fast implementation of the ADER approach which is

going to be derived under restrictions I–IV.

First condition IV is used. For the solution of the hyperbolic PDE (1) a finite volume discretization (3) is
applied with the numerical fluxes given by (6).

Two cases for the reconstructions must be analyzed:

I. Even order schemes. If we use central stencils, a linear reconstruction procedure of even order is ob-

tained. In this special case we have ~Uþ ¼ ~U� for the values at the cell interface.

II. Odd order schemes. If we use slightly non-centered stencils for the reconstruction from the left and from

the right, different values at the interface are produced from both sides. The general solution of the Rie-

mann problem ~URP ¼ RP ð~Uþ; ~U�Þ is a function of the Jacobians A, B only and thus known at the be-

ginning of the computation.
1 This condition can easily be given up, if the coefficients are recalculated partially for every time step.
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The procedure described in the following applies to the even order schemes. We note that for odd order

schemes a similar procedure can be derived, which is slightly more complicated due to the incorporation of

the Riemann-solver. The flux is now given by

~̂F iþ1
2
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Dy
2
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In the next step constant mesh sizes in x- and y-direction are assumed (condition II). Thus the coeffi-

cients Cnx;ny
i;j are constant for every cell and the brackets of Eq. (7) can be re-ordered:
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The new constant C�
ii;jj

is now a n� n matrix instead of a scalar, with n being the dimension of the state

vector ~U . This new constant contains all information about the Jacobians of the system, the Gaussian

integration for the high order flux calculation and the high order reconstruction of the derivatives.

In a last step, the finite volume scheme (3) is given with the discrete fluxes (11) as

~U
nþ1

ij ¼ ~U
n

ij �
XO=2

ii¼�O=2

XO=2
jj¼�O=2

C��
ii;jj

~Uiþii;jþjj

" #
: ð12Þ

The coefficient matrix C��
ii;jj

is a combination of CX� and CY � multiplied by Dt=jIijj. If the Jacobians A and

B are constant in the domain (condition I. ), the constant C�� can be used for every cell.

We note that scheme (12) now has the structure of a single-step finite difference scheme but with a real

two-dimensional stencil, which does spatial and temporal discretization at the same time. It is obvious, that

the ADER approach in this fast formulation needs less memory than a finite difference discretization with

the same spatial order and Runge–Kutta time discretization.

Note on the 2nd order scheme. For the second order scheme two Gaussian integration points in (6) or (10)
must be used for stability reasons. The resulting scheme is identical to the one-step Lax–Wendroff scheme in

two dimensions, described by Hirsch [6] in equation (17.2.48).

The computational effort of the scheme can be estimated easily. The number of points included in the

stencil grows quadratically with the order (ðk þ 1Þ � ðk þ 1Þ points). As the scheme is always one single step

in time, the CPU effort grows also quadratically. This is illustrated in Fig. 1, obtained by measuring the

CPU time for a given example. The estimated values are in good agreement with the predicted values. The
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Fig. 1. CPU effort depending on the order of the scheme, normalized to the second order scheme.
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growth rate is a little bit lower which may be due to a better use of the CPU cache for higher order schemes.

For comparison the DRPDRP scheme of Tam [10] has been added to the graph. It is a formally fourth order
scheme in space, which is derived from a sixth order finite-difference scheme. For the integration in time a

standard fourth order Runge–Kutta scheme has been used. We note that the order of accuracy in our test

calculations was limited to the 24th order. This was due to the facts that the accuracy needed for the

computation of the coefficients in (12) was not sufficient even using double precision variables. The re-

duction of the computational effort with respect to the original formulation is significant: For a 10th order

scheme the factor is �300 and for the 20th order scheme it is �2000.
3. Numerical results

In Computational AeroAcoustics (CAA) good wave propagation properties are a crucial point for

numerical schemes. The dispersion and dissipation errors must be as low as possible in order to provide

accurate wave propagation over long distances on reasonably coarse grids. In [7,9] we plotted the ampli-

tude- and phase errors for the ADER approach. As nothing is neglected, they apply without any change to

the fast-ADER approach. An O4 ADER scheme has approximately the same phase error as a sixth order

standard finite difference scheme. The amplitude errors do not depend very much on spatial discretization
but on the time discretization, so that the amplitude errors for all schemes which are fourth order in time

are quite similar. However with the ADER approach it is easy to obtain even higher order time discreti-

zations which leads to considerably lower amplitude errors.

Next, we show numerical convergence studies for a two-dimensional test case for the linearized Euler

equations

~Ut þ A
0
~Ux þ B

0
~Uy ¼ 0 ð13Þ

with

~U ¼

q0

u0

v0

p0

0
BB@

1
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u0 q0 0 0

0 u0 0 1
q0

0 0 u0 0

0 cp0 0 u0

0
BBB@

1
CCCA; B0 ¼

v0 0 q0 0

0 v0 0 0

0 0 v0 1
q0

0 0 cp0 v0

0
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The values to compute the (space–time constant) matrices A
0
and B

0
are q0 ¼ 1, u0 ¼ 1, v0 ¼ 1 and

p0 ¼ q0=c with c ¼ 1:4. The setup is an initial Gaussian density pulse of the form

q0ðx; y; t ¼ 0Þ ¼ e�ð1=2Þðx2þy2=r2Þ ð14Þ

with halfwidth r which is advected through the computational domain along the diagonal y ¼ x. The other
variables u0, v0 and p0 are initialized with 0. The computational domain has the extents 100� 100½ � units, the
boundary conditions are periodic and the error with respect to the exact solution is calculated after one

period of advection (T ¼ 100). The CFL number is set to m ¼ 0:67 and the number of gridpoints in x and y
direction is NG. A three dimensional plot of the solution after 100 periods is given in Fig. 2 for the DRPDRP

scheme of Tam [10] with Runge–Kutta fourth order time integration and for the ADER schemes of order

O4 – 12. Table 1 show clearly that the respective design orders of the numerical schemes have been reached

well for the O6 scheme. If we go to higher order schemes (O16), we get the problem that the resolution of the

scheme reaches machine precision for all wavelengths that can be resolved on a given grid. With mesh

refinement, the design order can not completely be retrieved for a given problem because of the limited

machine precision. Thus a sharper Gauss pulse r ¼ 2 units is used for the ADER O16 in order to increase

the errors and in order to avoid reaching machine precision too fast. Though being below the design order
of 16, the numerical convergence rate nevertheless confirms that the construction of very high order

schemes with the ADER approach is possible and that the only limiting factors are the resolution of the

grid and machine precision.
Fig. 2. Gausspuls with halfwidth of r ¼ 3 units at Tend ¼ 10,000, TDRP
end ¼ 12,000Dt, TADER

end ¼ 15,000Dt. (Dx ¼ Dy ¼ 1, u0 ¼ v0 ¼ 1). (a)

DRP-O4/RK-O4, (b) ADER O4, (c) ADER O6, (d) ADER O12.



Table 1

Numerical convergence rate for ADER O6/O16 scheme

NG ADER O6, r ¼ 3 ADER O16, r ¼ 2

L1 OL1 L1 OL1

75� 75 2.6687E) 04 7.6325E) 05

100� 100 3.6913E) 05 6.9 3.9629E) 06 10.3

150� 150 3.4632E) 06 5.8 2.0751E) 08 13.0

200� 200 6.2457E) 07 6.0 3.1870E) 10 14.5

300� 300 5.6160E) 08 5.9 6.7906E) 13 15.2

400� 400 9.9998E) 09 6.0 8.1115E) 15 15.4
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4. Conclusions

If the following assumptions hold: The mesh sizes Dx and Dy is constant and the PDE is linear with
constant coefficients, then the fast formulation of the ADER scheme leads to a single-step scheme in time of

arbitrary order of accuracy which is dramatically faster than the original formulation. For the 20th order

scheme the speed-up is about 2000. We implemented the scheme in such a way, that the order of accuracy in

space and time becomes only a parameter to be specified, so a really arbitrary high order implementation of

ADER schemes has been achieved. The practical limit is given only by computer precision in the calculation

of the coefficients. Compared to other high-order integration schemes in time such as Runge–Kutta

methods this is a clear benefit, because Runge–Kutta methods suffer from the Butcher barriers for orders

higher than four. The fast-ADER scheme has a very compact computational kernel which can be optimized
very efficiently. In one and two dimensions the second order scheme is identical to the classical second order

one-step Lax–Wendroff scheme. The ADER scheme was compared to standard finite difference schemes,

using Runge–Kutta time integration. Finally we presented a numerical convergence study for the two di-

mensional schemes up to O16. For very high order schemes the accuracy of practical computations is

limited by machine precision, as seen, e.g., in Table 1. The computational effort grows quadratically with

the order of accuracy of the fast-ADER scheme due to the quadratic growth of the stencil size. The schemes

presented in this paper are based on linear central reconstructions and are designed to capture linear wave

propagation with small dissipation and dispersion errors. Thus it is clear, that they cannot be TVD. If
discontinuities were inherent in the solution, other reconstruction techniques like WENO should be used.

The extension to three dimensions is straight forward. Further work on ADER schemes has to be done for

nonlinear systems and for reconstruction on unstructured meshes.
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